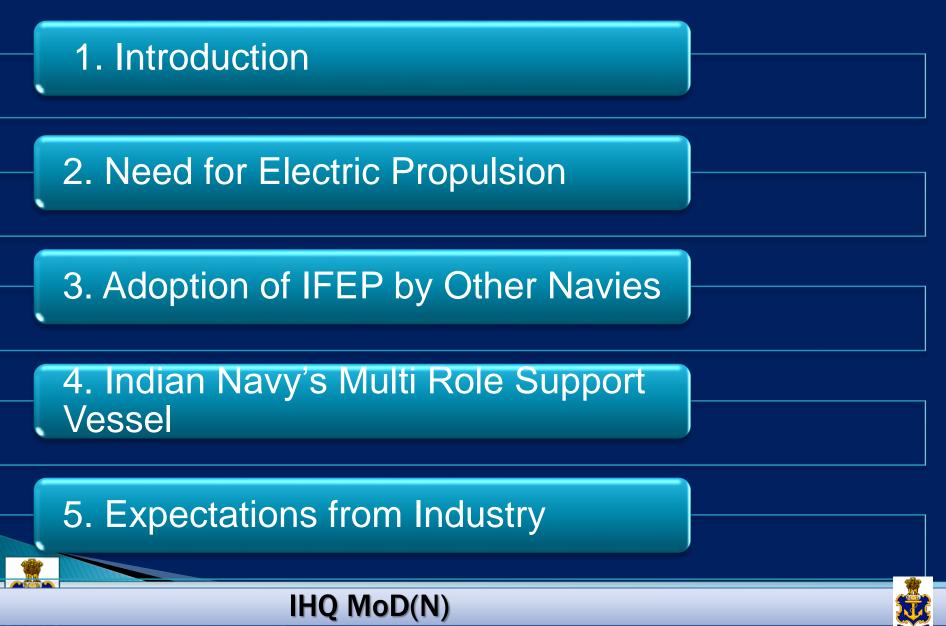
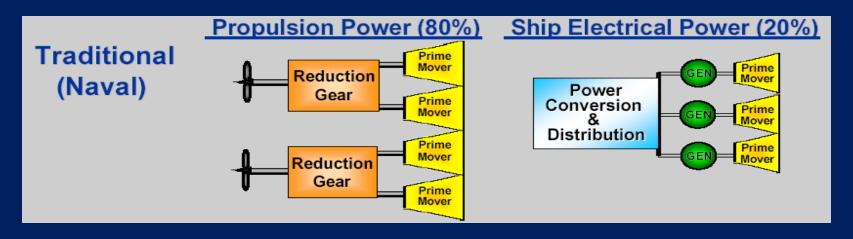
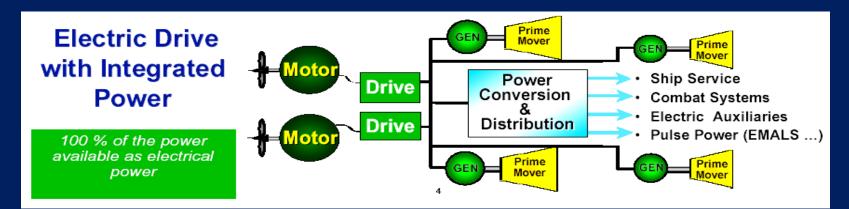


INTEGRATED FULL ELECTRIC PROPULSION


FOR INDIAN NAVY

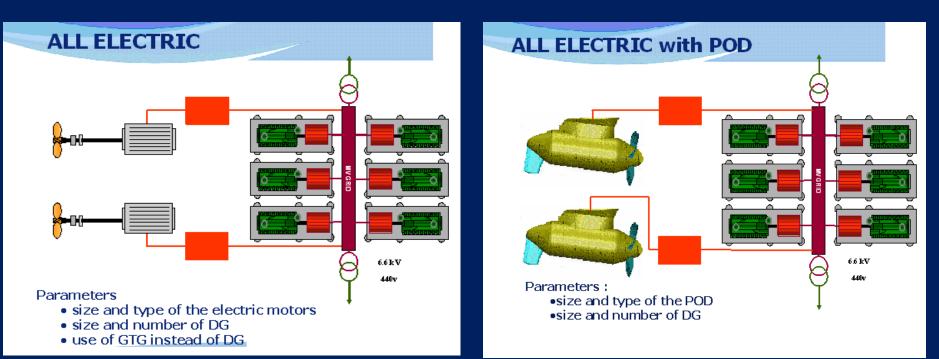
EXPECTATIONS FROM DEFENCE INDUSTRY


IHQ MoD (N)



रानां यरुणाः

Conventional Vs Electric Propulsion



Continued

IHQ MoD (N)

All Electric Propulsion Arrangements

Typical All Electric Propulsion Arrangements

IHQ MoD (N)

<u>Governing Factors for Electric</u> <u>Propulsion</u>

> Operating Profile of the Vessels

Advancement in Naval Weapon systems – Increase in power Requirements

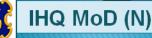
Requirement to reduce Life Cycle Costing & achieve better operational superiority

Provision to accommodate weapon systems upgrades and associated increases in required power

Integrated Full Electric Propulsion

Benefits

- Reduced ship life-cycle costs
- Better stealth features & Increased payload & Increased survivability
- Power available for non-propulsion uses
- Simplified Controls/ Increased automation
- Reduced manning & Improved flexibility for upgrades over life



Integrated Full Electric Propulsion

Challenges / Disadvantages

- > Higher initial costs
- Complexities in Power Management
- > High Voltage Systems
- Not suitable for smaller platforms

Electric Propulsion in Foreign Navies

Albion Class LPD (18000 Ton), UK

- 02 x 12.5 MW; 02 x 3.1 MW DG
- 02 x 06 MW Motors; HV System

Type 45 Destroyer (7500 Ton), UK

- 02 x 25 MW GTG; 02x 2 MW DGs
- 02 x 20 MW AIM ; HV System

Queen Elizabeth A/ Carrier(65500 Ton)

- 02 x 36 MW GTG; 04 DGs 9-11 MW
- 04 20MW AIM

Electric Propulsion in Foreign Navies

Zumwalt Class Destroyer, (15600 ton), US

- 02 x 36 MW; 02 x 3.9 MW RR GTG
- 02 x 34.6 MW AIMs

T-AKE Class Cargo Ships, US

- 04 MAN B&W DGs; Total 35.7 MW
- 02 x 11.2 MW AIM ; HV System

Mistral LHDs (22000 Ton), France

- 02 x 12.5 MW; 02 x 3.1 MW DG
- 02 x 7MW Podded Propulsion

<u>Indian Navy's</u> Landing Platform Dock Programme

IHQ MoD (N)

Landing Platform Docks

Four Landing Platform Docks (LPDs)

Buy & Make Indian - <u>Two – Selected Indian Private Shipyard</u>

 (i) Larsen & Toubro (L&T)
 (ii) Reliance Def & Engineering Ltd
 (iii) ABG Shipyard

- Two - M/s HSL, Vizag

> Broad Specs

- : Length
- : Draught
- : Speed

- 215 Mtrs
- 8 Mtrs
- 20 Kts

Full Electric Propulsion

Source Ref : https:/en.wikipeida.org/wiki

IFEP – Expectations from Industry

Development and production of different types of advanced propulsion motors.

Development & Production of HV power generation equipments.

Development and production of HV power distribution equipments.

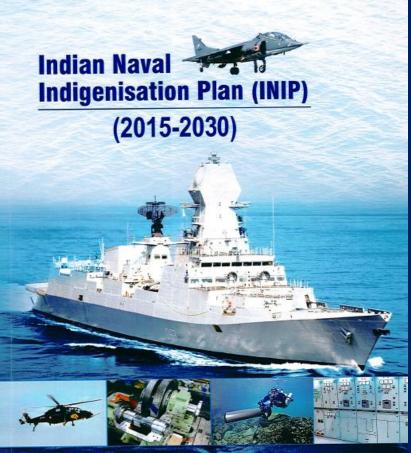
Development and setting up simulators for testing and training.

IFEP – Expectations from Industry

Development of Propulsion control system and Automated power management systems.

Development of advanced fire fighting systems for HV/ MV Compartments.

Development of 'Stored Energy Concept' for IFEP ships.


Development of expertise in the field of Propulsion system integration for IFEP & Design optimization.

Indian Navy Indigenisation Plan (INIP) -15

" Indigenous production and high capacity power electronics/ HV/ MV systems design capabilities are planned to be developed though ToT route ".

DIRECTORATE OF INDIGENISATION IHQ MOD (NAVY)

Conclusion/ Way Ahead

- Development of Defence Industry
- > IN Blueprint Indigenisation and Self Reliance

MARINE ENGINEERING

