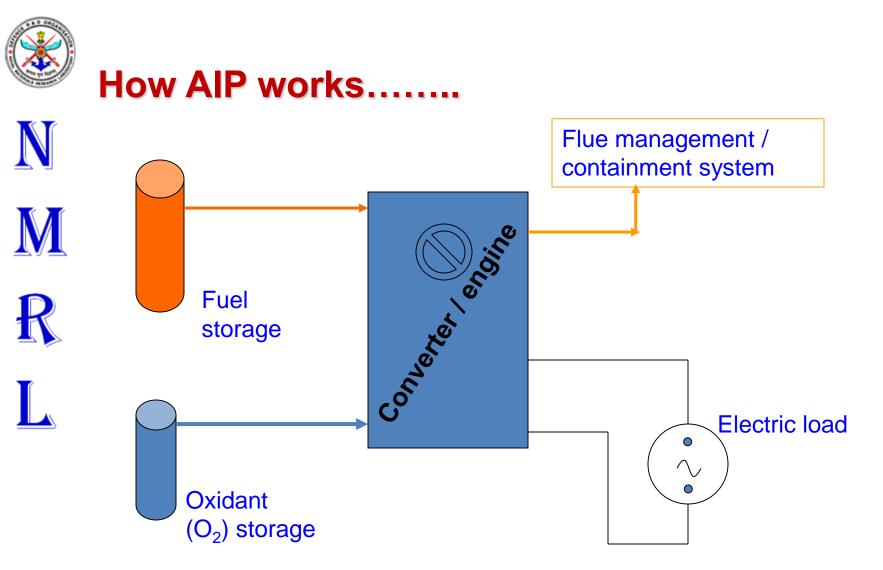


AIP Technologies/Stored Energy Devices

M PATRI


AIP : Additional power plant added to the Diesel-Electric submarine for extending the underwater endurance

The AIP

- ► It is an non-nuclear alternative
- M ≻Longer endurance under submerged condition by supplementing the lead acid batteries
 - Provides higher stealth (acoustic silence) characteristics underwater
 - Reduces the risk of exposure by avoiding frequent surfacing

Objective :- to preserve battery power while underwater

Comparison of global AIP technologies

- N
- M Closed cycle Diesel (CCD) Russia (****)
 - Noisy, discarded by the modern Navy
 - Steam alternator MESMA France (*****)
 - Noisy, exported to Pakistan Navy
 - Sterling engine Sweden {****}

- Adopted in Kockum class and technology exported to China
- Fuel cell system {*****}
 - Metal hydride / PEMFC Germany (used by many countries)
 - Diesel reformer/ AFC Russia prototype level
 - Diesel reformer / PEMFC France | Spain prototype level
 - Borohydride / PAFC DRDO India prototype level(advanced)

Selection of Hydrogen-Oxygen Fuel Cells...a trade off

ooloollon on nyarogon oxygon raor oonolla aaao on						
Fuel Cell Types	Efficiency	Life	Size	Reactant quality required		
Alkaline Fuel Cells (AFC)	High	Poor 🗡 < 2000 hrs	medium	Ultra high purity		
Polymer Electrolyte Fuel cells (PEMFC)	Medium	Medium < 5000 hrs	small	High purity		
Phosphoric Acid Fuel Cells (PAFC)	Medium	High > 45000 hrs	big ×	Low purity		
Solid oxide fuel cells (SOFC)	Technology	under devel				
Molten Carbonate fuel Cells (MCFC)	Technology	under devel				
	Fuel Cell TypesAlkaline Fuel Cells (AFC)Polymer Electrolyte Fuel cells (PEMFC)Phosphoric Acid Fuel Cells (PAFC)Solid oxide fuel cells (SOFC)Molten Carbonate fuel	Fuel Cell TypesEfficiencyAlkaline Fuel Cells (AFC)High Polymer Electrolyte Fuel cells (PEMFC)Medium Phosphoric Acid Fuel Cells (PAFC)Medium Solid oxide fuel cells (SOFC)TechnologyMolten Carbonate fuelTechnology	Fuel Cell TypesEfficiencyLifeAlkaline Fuel Cells (AFC)High Poor < 2000 hrs	Fuel Cell TypesEfficiencyLifeSizeAlkaline Fuel Cells (AFC)High ✓Poor ✓ < 2000 hrs		

1

N Onboard Hydrogen storage/generation ... **Primary driver**

M R I	Technology	Additional LOX complime nt	Gaseous effluent (cause noise)	Life	Hydrogen qty
	Metal hydride	Nil 🗸	Nil	Low 🗡	Low 🗡
	Diesel Reforming	High 🗙	High	Uncertain	Medium
	Methanol reforming	Low	Low	High	high
	Borohydride hydrolysis	nil 🗸	nil 🗸	high 🗸	high

N

M

R

NMRL competence in fuel cells technology

- Materials for Phosphoric acid fuel cells (PAFC)
 - Complete material solutions for PAFC 1996-1998
 - Catalyst, moulded graphite bipolar plate, carbon paper, sealants, acid holder matrix etc. (innovations patented)
 - Indian Industry partner developed for all materials
- Fuel cell Stack 1998-2003
 - PAFC stacks 1-3kw

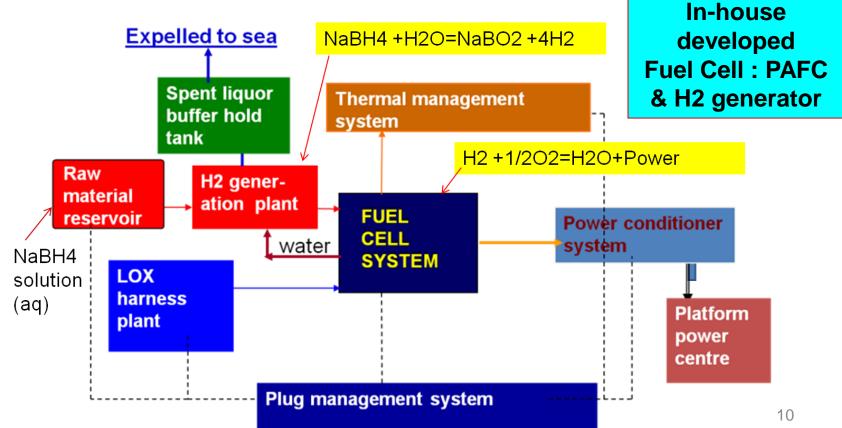
- PAFC technology for production transferred to industry
- Fuel cell power plant 2003-2009
 - Compact packaged methanol reformer for fuel cell Field use (any fuel cell) with filters if required upto <u>15kw power plant</u>

Upgradation of Fuel cell Stacks for Marine grade ruggedization & Compaction

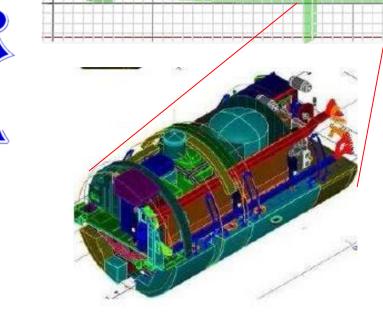
• 6kw, N6 (2011)

- 9kw, N9
- Shock/vibration –ok (2013)

- 11.5 kw, N11
- Rugged cocoon
- Shock /vibration –ok (2015)


Knowhow transferred to Industry partner & is completely industrialized Possible to use upto 500kw power generation by series /parallel connection

M


- Air Independent Propulsion (AIP) Technology Conceptualized & Developed in NMRL
- Present system configuration is customized for P-75 Submarines;
- Flexible modular design approach allows adaptation

to any submarine - new or retro fitment

NMRL developed Fuel Cell AIP for integration to ongoing P-75 Submarine

- •Fuel Cell based AIP is integrated in a additional section (AIP plug) and inserted to the Submarine
- •Open architecture plant proven
- •Prototype conforming to Submarine stds. Under advanced phase of development

Novel H2 Provision for futuristic FC based AIP

- Ammonia electrolysis
 - Advantages
 - •Small fraction of power required for splitting ammonia
 - •Quick startup and simple system
 - •Highly suitable for very long endurance
 - -Challenges
 - •Safety solution for carrying pressurised fuel
 - •Noise reduction due to Nitrogen (by-product) bubbling out
- AI / Gallium liquid metal alloy based generator
 - -Advantages
 - •Quick startup and pumpable liquid alloy (>40°C)
 - •All solid by products, possible to contain within submarine
 - -Disadvantages
 - •Safety solutions for explosive reaction with water in case of storage breach

Polymer based electrochemical super capacitors with very high capacitance and high power density, excellent cycle life.

- Configuration
- ✓ Capacitance: 100 F-1000 F
- ✓ Voltage: 0-2.5 V (Vmax:2.75 V)
- ✓ ESR: 15 to 35 m ohm
- ✓ Operating Temp.: -40 to 55 °C
- Applications
- ✓ Fuel cells
- ✓ Sonar
- ✓ Telecommunication systems
- ✓ Portable Power Pack Systems
- ✓ Cranking of engines
- ✓ Electric vehicle
- Status:
- ✓ Technology available for transfer

THANK YOU