THE MAKE IN INDIA PARADIGM – ROADMAP FOR A FUTURE READY NAVAL FORCE

Marine Propulsion & Power Generation : Challenges & Opportunities

Content

Propulsion & Power Generation : The Present

Volumes & Value

Challenges & Emerging Technologies

Future induction requirements

Indian Navy expectations & requirements

Propulsion & Power Generation : The Present

Propulsion Systems Evolution

1970 - 80

Leander & Godavari Class Frigates (P-16 & P-16A)

≻Steam Propulsion

1980 - 90 Khukri & Kora Class Corvettes (P-25 & P-25A)

➢ Diesel Propulsion Delhi Class **Destroyers** (P-

15)

1980 - 90

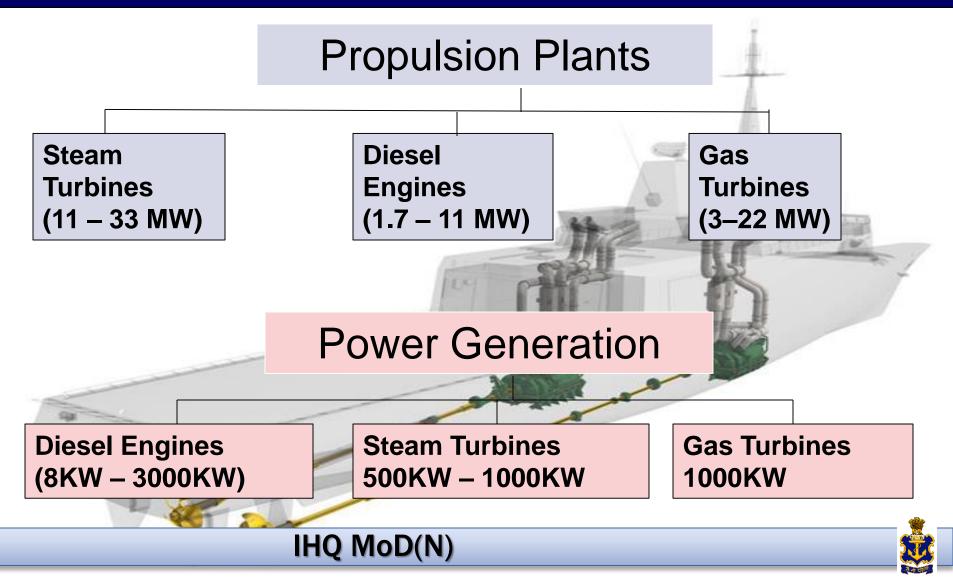
> Combination of Gas Turbines (COGAG)

1995 - 2012 Shivalik Class Frigates (P-17)

2000 - 2015 **ASW Corvettes** (P-28)

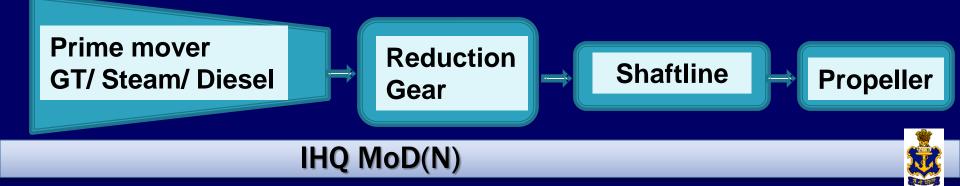
Combination of Diesels & Diesels (CODAD)

2000 - 2018


Indigenous **Aircraft Carrier** (P-71)

➤ Combination of Gas Turbines (COGAG)

➢ Combination of Diesels & Gas Turbines (CODOG)



Propulsion & Power Generation : Types

Present : Propulsion Volumes

Prime mover	<u>Ships</u>	Power	<u>Approx</u> <u>Units</u>
Steam	Aircraft Carriers,	11 MW to	24 Boilers,
	Frigates, LPD	33 MW	18 Turbines
Gas	Destroyers, Frigates,	3 MW to	154
Turbines	Missile Boats	22 MW	
Diesel	Tankers, Corvettes, OPVs, Survey, LST, LCU,FACs,Yardcrafts	1.7 MW to 11 MW	200 +

Propulsion - Approx Cost

Propulsion	Power	Approx Cost
Gas Turbine	3 MW to 22 MW	INR 12 - 80 Cr/ Unit
Diesel Engine	1.8 MW to 11 MW	INR 5 - 20 Cr/ Unit
Steam (Turbine + Boiler)	11.5 MW to 34 MW	INR 40 – 125 Cr/ Unit
Reduction Gear	Matched with	INR 1.5 - 40 Cr/ Unit
Shafting &Propellers	Engine power	INR 1.25 – 30 Cr/ Unit

Approx Cost (INR) : OPV

<u>Ship</u>	Propulsion Fit	<u>Cost</u> @ <u>Unit</u>	<u>Total</u> <u>Cost</u>	Acquisition Cost @ ship	Life cycle Cost (LCC) @ ship
OPV	2 MDEs (Approx 8 MW each)	15 Cr	2X15 = 30 Cr	30 + 10 +	5 * 30+ 10*2+
	2 Reduction Gears	5 Cr	2X5 = 10 Cr	10 = 50 Cr	10*2 = 190 Cr
	2 Sets of Shafting & Propellers	5 Cr	2X5 = 10 Cr	50 01	

For 1 OPV : <u>Main propulsion : Acq Cost (50 Cr) + LCC (190 Cr) = 240 Cr~</u> <u>4 DG Sets : Acquisition Cost (4 Cr) + LCC (20 Cr) = 24 Cr ~</u>

Approx Cost (INR) – Propulsion

<u>Ship</u>	Propulsion Fit	Approx Cost per Unit	<u>Approx</u> <u>Total</u> <u>Cost</u>	Approx Acquisition Cost per ship	Approx Life cycle Cost (LCC) per ship
Frigate	2 GTs (Approx 22 MW each)	80 Cr	2X80 = 160 Cr	160 + 30 +	160*2+ 30*5+
	2 MDEs (Approx 6 MW each)	15 Cr	2X15 = 30 Cr	24 + 40 =	24*2+ 40*2=
	2 Reduction Gears	12 Cr	2X12 = 24 Cr	254 Cr	598 Cr
	2 Sets of Shafting & Propellers	20 Cr	2X20 = 40 Cr		
For 1 Frigate Main prop : Acquisition Cost + LCC = 852 Cr Approx					

Present : Power Generation Volumes

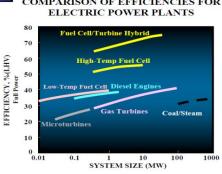
<u>Power</u> <u>Generator</u>	<u>Ships</u>	Power Range	<u>Approx</u> <u>Units</u>
Gas Turbine Generators	Destroyers	1 MW	60
Diesel Alternators	Carrier, Frigates, Corvettes	8 KW to 3 MW	400 +
Steam TA	Carrier, Steam Frigates	750 KW to 1.5 MW	12

IHQ MoD(N)

Prime mover GT/ Steam/ Diesel Alternator : O/P Voltage & Freq to meet Platform requirements

Challenges & Emerging Technologies

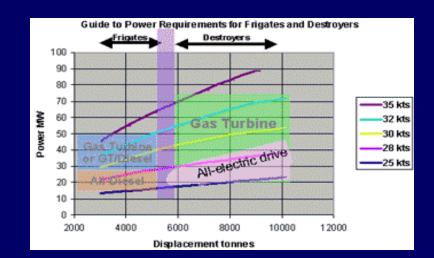
Challenges

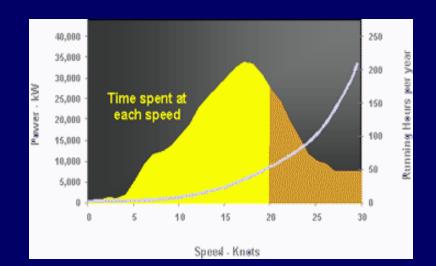

Components

- Matching Global Technology
- MIL Standards compliance
- Reliability
- Stringent Emission Norms
- Lower SFCs / Greater η
- Stealth requirements
- Restricted Production Volumes

Propulsion System Integration (PSI)

- Multidisciplinary & complex
- Overall propulsive η is a function of PSI





Emerging Technology Drivers : Internal Factors

- High 'Power Density' requirements
 - Relieve space
 - Smaller but 'loaded' ships
- More flexibility in operation: Higher efficiency over large operating envelopes
- Stealth requirements

Emerging Technology Drivers : External Factors

- Low 'Life Cycle Cost'
- Depleting fuel reserves
- Emission norms

New Technologies

IHQ MoD(N)

Table 1. MARPOL Annex VI NOx Emission Limits

Tier	Data		NOx Limit, g/kWh	
	Date	n < 130	130 ≤ n < 2000	n ≥ 2000
Tier I	2000	17.0	45 - 11 0-2	9.8
Fier II	2011	14.4	44 · n-0.23	7.7
Fior III	2016†	2.4	0 0.07	1.06

In NOx Emission Control Areas (Tier II standards apply outside ECAs).

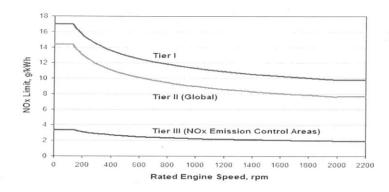
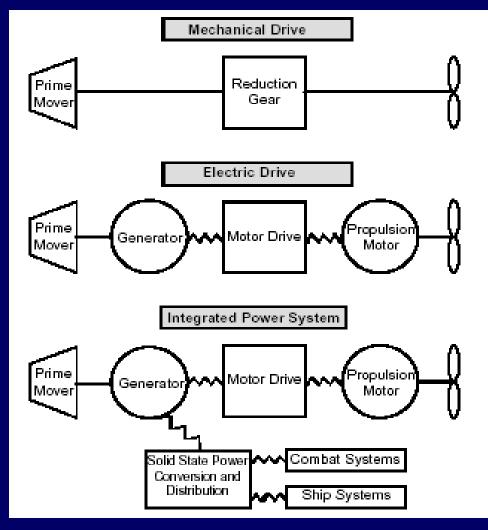



Figure 1. MARPOL Annex VI NOx Emission Limits

by combustion process optimization. The parameters examined by engine manufactu

Emerging Technologies : Propulsion Integrated Full Electric Propulsion (IFEP)

Future induction requirements

Future Induction : Volumes

<u>Ships</u>	Propulsion/ Power Generation	<u>Power</u> <u>range</u>	<u>Expected</u> <u>Units</u>
Fleet Support Ships,	<u>P</u>	<u>ropulsion</u>	
Shallow Water Crafts, MCMVs, LPD, Large Survey Vessel, Diving	Diesel Propulsion	1.2 to 18 MW	160
Support Vessel,	Associated Reduction Gears		
Multipurpose Vessel,	Associated Shaf	ting, Propell	ers
Barges, Yardcrafts etc.	Powe	er Generati	<u>on</u>
	Diesel Generators	50 kW to 1 MW	190+

Future Induction Propulsion : Value

Propulsion Type	Power range	Expected Units	Approx Acquisition Cost / Unit	Total Approx Acquisition Cost	
Diesel	1.1 to 18 MW	160	2.6 – 25 Cr	1327 Cr	
Gearbox & Shafting	Matched with Propulsion	155	2 .0– 10 Cr	1221 Cr	
	Acquisition Cost Approx 2547 Cr				
* Life Cycle C	* Life Cycle Cost ~ 2 to 5 times the Acquisition Cost				
Acquisition Cost (2547 Cr) + Life Cycle Cost (9076 Cr) ~ 11623 Cr					

Future Induction Power Gen : Value

Power Gen Type	Power range	Expected Units	Approx Acquisition Cost / Unit	Total Approx Acquisition Cost	
Diesel	50 kW- 1MW	190+	0.25 – 5 Cr	307 Cr	
* Life Cycle C	* Life Cycle Cost ~ 5 times the Acquisition Cost				
Acquisition Cost (307 Cr) + Life Cycle Cost (1536 Cr) ~ 1843 Cr					

Future Induction : Value

Equipment	Expected Units	Approx Acquisition Cost	Approx Life Cycle Cost	Approx Total Cost
Main Propulsion	160	2547 Cr	9076 Cr	11623 Cr
Power Gen	190+	307 Cr	1536 Cr	1843 Cr
			Total	13466 Cr

Total Approx Cost ~ 13,466 Cr

Indian Navy : Expectations & Requirements

Indian Navy Expectations & Requirements

- Indian Naval Indigenisation Plan (INIP) 2015-2030
 Indigenous development
 IN-Industry synergy
 - ° mo-muustry synergy
- End to End Propulsion solutions
- New & efficient Technologies
- Development of equipment meeting stringent standards
- Modularity with a standard as well as well-defined minimum interfaces

Indian Navy Expectations & Requirements

- Reliability
- Efficient life cycle performance
- Environmental effects
- Efficient Life Cycle Support

Recent initiatives – Make in India

- Diesel Engines for propulsion (6 to 12 MW) and Boats being imported
- No indigenous option presently
- Indigenous manufacture of medium power Diesel engines and small engines for boats under 'Make' category
- Preliminary talks with Industry

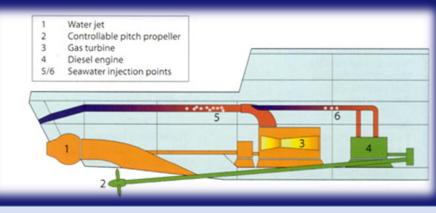
Recent initiatives – Make in India

> Broad timelines for the project

- Advanced Planning & Consultation In progress. Mid May 16.
- Feasibility study 31 Aug 16
- PSQR preparation 31 Oct 16
- AON for prototype & final product 31 Mar 17
- Prototype development 2020

Recent initiatives – Make in India

- Govt funding of 90% of prototype development cost under 'Make-I' category
- > Volumes envisaged between 2019 to 2025
 - 36 Nos Diesel Engines (6 to 12 MW) (AON accorded projects)
 - 221 Nos Boat Engines


Hidden Slides

New Technologies in Propulsion Configurations

- Energy efficient
- Flexible
- Hybrid
- Silent

CODAD	Combined Diesel & Diesel
CODOG	Combined Diesel or Gas Turbine
CODAG	Combined Diesel & Gas Turbine
CODAG- WARP	Combined Diesel & Gas Turbine Waterjet & Refined Propeller
CODLAG	Combined Diesel-Electric & Gas Turbine

MIL / DEF STANs

MIL / Def Stan	Description
Def Stan 02-313	Diesel Engine for Marine Propulsion and auxiliary machinery
NES 1004	Requirement for design and testing of equipment to meet environmental condition
MIL-STD-1472G	Design criteria standard Human engineering
Defence Standard 02-703	Thermal and acoustic insulation of hull and machinery
MIL-STD-740-2 (SH)	Structure-borne vibratory acceleration measurements and acceptance criteria for ship board equipment
MIL-STD-1474 D	Air borne sound measurements and acceptance criteria of shipboard equipment
NES 309	Requirement of Gas Turbines

MIL / DEF STANs

MIL / Def Stan	Description				
MIL-S-901D	Shock tests, high impact shipboard machinery and systems.				
IN Shock Grade 'A' as per BR 3021	Requirement of High Impact Shock Grading				
MIL-STD-167-1(A)	Mechanical vibrations of Shipboard equipment.				
NES 305	Requirement of Main Propulsion Gearing				
EED-Q-071	Specifications for Motors and Starters for Naval ships (Indian Navy specifications)				
MIL-STD-461E/F	Requirements for control of EMI / EMC characteristics of equipment / subsystem				

Indian Naval Indigenisation Plan 2015-30

Directorate of Indigenisation

Indian Naval Indigenisation Plan(INIP)

1.12 <u>Main Areas Where *IN* is Facing Capability Gaps</u>. As brought out above, *IN* has been able to achieve about 90% indigenisation in the 'FLOAT' category, followed by about 50-60% in 'MOVE, category depending upon the type of propulsion. However, in the 'FIGHT' category we have achieved only about 30% indigenisation. Some of the major equipment where there has not been satisfactory progress are the weapons & sensors, propulsion systems (especially Gas Turbines), Marine Diesel Engines for main propulsion and Gear Boxes under 'MOVE' category, which are imported presently and holds much scope for indigenisation.

IHO MoD(N)

Indian Naval Indigenisation Plan 2015-30

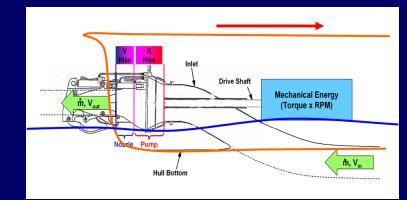
Directorate of Indigenisation

Indian Naval Indigenisation Plan(INIP)

Appendix-A

FORECAST REQUIREMENT OF EQUIPMENT AND SYSTEMS MARINE ENGINEERING EQUIPMENT

<u>Ser</u>	<u>Equipment</u>	<u>2015-20</u>	<u>2021-25</u>	<u>2026-30</u>	Total
1.	Complete Boiler tubes and refractory	04	08 sets		~~ .
2.	Lub oil and sea water coolers fitted on various machinery	10	20 sets each	08 sets 30 sets	20 sets 60 sets
3.	Shafting components like bearings, thrust pads etc	04	08 sets	each 16 sets	each 28 sets
4.	Lub oil coolers, condensers & evaporators of Motor and Turbo Driven Air Conditioning and & Refrigeration Plants	02	04 sets each	04 sets each	10 sets each
5.	Valves fitted in freshwater, feed water, sea water and other auxiliary system.	50	150	300	500
5.	Components level items of Boiler and Turbine Aggregates control system.	02	04 sets each	04 sets	10 sets
<u>.</u>	Turbo-driven Fuel Pumps	02	02	each	<u>each</u>
3.	Turbo-Blower Units	02	02	02	06
).	Feed Condensate Booster Turbo-driven Pumps	02	02	01 01	<u>05</u>


Emerging Technologies : Propulsors

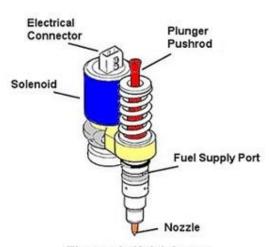
Water Jets

- Sustain high speeds
- Rapid acceleration
- Extremely maneuverable
- Shallow draught system
- More efficient at higher speeds

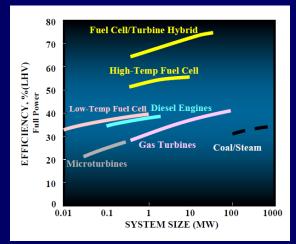
Propulsion Pods

- Free space inside ship
- Efficiency & maneuverability
- Field wound synchronous or induction motors
- Shock grading mandatory

Emerging Technologies : Power Generation


> Electronic Injectors

- Micro processor based
- Increased Part Load Efficiency
- Low Emissions
- \circ Low SFC


Fuel Cell

- High efficiency
- Low Emissions
- High Power Density
- Reduced intake/ Exhaust Ducting

IHQ MoD(N)

Electronic Unit Injector

